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ABSTRACT 

By  the  use of two  separate  mesh sizes instead of OIICL irl+cornputirlg finite differences, an  extrapolation  to effective 
“zero”  mesh size may  be  made  in  order  to  reduce  the  truncation  error, a s  originally  suggesttd  by  Richardson.  This 
technique of “difference  extrapolation”  is  applied  to the? estimation of individual  differentials  in the  barotropic  vor- 
ticity  equation,  and  here  corresponds  to  the  use of “sccorld-order”  finite differences. The  truncation-induced  phase 
speed  lag of the  difference  solution  relative to  the  true  solution is shown to be  systematically  reduced, especially for 
the  shorter  waves.  Next,  the  cxtrapolation is applied  with  two  separate  solutions of the  barotropic difference equation, 
with  the  result  that  the  phase  speeds  are  further  improved,  but at the expense of an  amplitude  distortion of about 10 
percent.  This  amplitude  distortion  may  be  removed  for a particular  wavelength,  and  a  small  further  phase  speed 
improvement  obtained,  but  the  amplitude  distortion  remains  for  other  wavelengths.  These  methods of “solution 
extrapolation”  are  therefore  felt  to  be  unsuitable  for  routine use. The  mcthod of “difference extrapolation,”how- 
ever,  preserves  the  solution’s  amplitude,  and if used in  conjunction  with a suitable  smoothing  procedure  should 
result in a net  error  reduction for those  waves  resolved  by  the mesh and  retained  by  the  smoothing. 

1. INTRODUCTION 

I n  the  approximation of spat’ial  derivatives by finite 
differences, a  truncation  error  is  made which  in  general 
depends  upon the size of the finite  space  incrernerlt,  as 
well as upon the wavelength  and  orientation of the con- 
tinuous field being estimated.  The  most widely-used 
procedure  is the familiar  centered  space difference, which 
we may  illustrate  in  the case of the first derivative of a 
(continuous)  function f as 

where x is a  typical  space  coordinate  and Ax is the nlesh 
size. The error of this  approximation is easily  shown to 
be of the order  AX)^, i.e., 

1 This research has been supported by the Geophysics Research Directorate of the Air 
Force Cnmhridee Research Center  under  wntract No. A F  19(604)-4965. 

This  approximation is furthermore a consistent  one in 
the sense that e(f)-0 as Ax-0. I t  is the purpose of this 
study  to utilize such Ax-dependence of the truncation 
error  in  order to improve the accuracy of the finite- 
difference approximation  itself,  using an extrapolation 
technique. The procedure to  be described will be seen 
to be relat’ed to  several proposed  methods for the reduc- 
tion of truncation  error  and for  smoot’hing. 

2. THE  EXTRAPOLATION  TECHNIQUE 

Since the  accuracy of the difference approximation de- 
pends  upon  the  mesh  spacing, i t  occurs to one that from, 
say, two finite difference estimates,  made  with different 
grid  increments, an improved  estimate of the  derivative 
might be made. Considering the  estimation of bf/bx for 
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example, and  denoting  the  two  grid  increments  by Axl, 
and Axz, we have 

where ( ~ l j ) ~ , ~  denotes  either of t,he  two difference estimates 
of bf/bz. Since the error of (Aj)l ,z is of the order  AX)^, 
we may  extrapolate t,o an effective zero mesh size by form- 
ing  the  linear  combination 

where p = ~ ~ z / ~ ~ l > l .  This  "extrapolation  to  the  limit" 
is illustrated  in figure 1, and was evidently first  suggested 
by Richardson [6]. 

In  order to show that  the  estimate (4) is  a  systematic 
improvement  over  either (Af)l or (Aj)2 alone, we may ex- 
pand j in a Taylor series with  rernainder about x=O, 

where el, . . . , ea are  suitable point's in  the  vicinity of 
the origin. Inserting  these expressions into (3) and (4), 
we find the  truncation  error 

This  result  was  only to be  expected,  however,  since the 
pz-extrapolation in (4) was  designed to  eliminate  the 
dominant E AX)^ error-dependence of (Aj)l,2. 

This  extrapolation  technique  has  been used wit11 some 
success in steady-state problems of engineering  (Salvadori 
[SI), and is a  relatively well-known procedure  in  t8he 
numerical  analysis of linear differential  equations (see, 
for example, Buckingharn [l] or Hartree [3]). In  the 
nonlinear,  time-dependent  equations  typical of dynarnical 
weather  prediction,  however,  we  have no guarantee  that 
its use will result in a systematic  improvement. In  the 
first place, the extrapolation  might  be  performed a t  each 
time step  in  the  calculation of the non-homogeneous terms, 
or might  be  applied  to the  entire  solutions  from  the 
separate grids.  Moreover, in  the presence of several 
wavelengths in  the field of the  dependent  variable,  the 
extrapolation may  improve  the differecce estimates for 
only  certain  waves  and  fail  to  provide an overall  error 
reduction of the  order implied by (7). In  spite of these 
misgivings, it seems  worthwhile  to  give the extrapolation 
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FIGURE 1.-The Richardson  extrapolation  technique  for  the 

reduction of truncation  error,  applied to the calculation of the 
derivative df/dx by centered differences. 

t'echnique  sorne  further  consideration,  particularly  in view 
of its relations  to  other  computat'ional  schemes discussed 
below. 

For  the sake of clarity,  let us select Axz/Aal=2, and 
again corlsider the  estimation of bj/bz by centered differ- 
ences. Expanding (4) we find,  with p2=4, 

which,  upon use of (3), in  turn yields 

where j - * a z  denotes j ( ~ - 2 A z ) ,  etc.  This expression is 
recognized AS just  the "five-point"  approximation  to  the 
first  deriv. d t' 1ve. 

The extrapolation  tcchnique may also be  employed  in 
the  estimation of other differentials, of which the familiar 
Laplacian v'f is a  convenient  example.  Proceeding  as 
before, we find 

where (Ay)l,z are  the difference estimates of v'f with a 
truncation  error O(Arz).  The error of the  extrapolated 
estimate (A2f)o is now  AX;."). If we select pz=2, we 
then  have  simply 
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This  formula is the  same  as  that  found  by  Knighting [4] 
in considering both  the conventional  five-point  Laplacian 
estimate  and  that  involving  the  four  “corner”  points a t  
a  distance Jz greater  from  the  central  point.  This 
scheme is generated  by  a 45’ rotation of t’he  grid axes, 
and is an  improvement on the  directionally-averaged 
estimate of the LaplacitLn proposed by Thompson [lo]. 

As a  final case of nleteorologieal interest, we note  t’llat 
the  extrapolation  method may be  used in  estimating  the 
Jacobian J ( a ,  b )  of two  scalar  variables a and b. The 
conventional estimate 

I l ( a , b ) = ( 4 A ~ ~ 2 ) - 1 [ ( ~ , + l , j - a i - l , j ) ( b i . ~ + ~ - b i , ~ ~ l )  

- ~ ~ ~ , , + l - ~ ~ , ~ - l ~ ~ ~ ~ + l , ~ - ~ , - l , ~ ~ l  (12) 

since the  dominant  truncation  error  in  each case is O ( A x z ) .  
The  error of the  estimate Io(a,b) is readily  shown  to  be 
O(As4) ,  and hence  a systematic  improvement  over  either 
Il(a,b) or 12(a,b) alone. If we select p=2 as before, we 
find 

I,(a,b)=211(a,6)--I,(a,b) (14) 

which has also been suggested by  Knighting [4] using the 
45” “rotated” axes  for I,(a,b). Knighting,  Jones,  and 
Hinds [5] have used both Il(a,b) and 12(a,b) as separate 
estimates of the  Jacobian  in  numerical  integration of a 
simple dynarnical  model, and find in  general that  the 
“rotated” axes estimate (Iz(a,b)) yields  a  smoother field, 
and  in some cases improved the prediction. From  the 
present  viewpoint it would have been interesting if both 
estimates were used as  in (14). 

3. THE  EXTRAPOLATION OF DIFFERENTIALS 
IN  THE  BAROTROPIC  VORTICITY  EQUATION 

Instead of the  estimation of a single  differential,  the 
meteorological prediction  problem  involves the solution of 
a  complete  differential equation.  The  simplest of such 
equations is that of the linearized barotropic  model, 

where J. is the  stream  function of the nondivergent flow, 
U the  assumed  constant zonal current, p the  Rossby 
parameter,  and x and t the  eastward  spatial  and  time 
coordinates,  respectively. As noted  earlier,  there  are evi- 
dently  two  ways of applying  the  Richardson  extrapolation 
technique: Either  to  improve  the  estimates of each dif- 
ferential of (15) separately,  or  to  improve  the  solution  by 
a  suitable  combination of two  solutions  found  with dif- 
ferent  mesh sizes. We  shall  consider  both  methods  in  this 
and the following sections. 

The first extrapolation  method, which might  be  termed 

“cxtrtlpolat’ion of differentials,”  is  based  upon  the  fact 
that  the  truncation  error of d+/bs, b2+/b2, and b3+/bx3 is 
O(Ax2) when the usual  centered  space differences are used. 
The use of centered  time differences in  the  solution, how- 
ever,  introduces  some  awkwardness  into  the  analysis by 
virt’ue of‘ its inapplicability  for the first  time step.  For- 
ward  time differences, on the  other  hand,  are  unstable  and 
consequently  unsuitable.  There  remains  the  method of 
implicit’ differences (Gates [a]), and it will be used here 
ill order  to simplify the  tnalysis  and  at  the same  time  to 
ernplo3- a method  applicable  in  practice. 

The essence of the implicit difference approximation is 
the use of information a t  both the  current discrete  time 
step T and  at  the next  time step T+ 1 in  order  to  evaluate 
centered  spatial differences. For  the  derivative d+/dz we 
thus  have 

where Af denotes  the  usual  centered difference estimate 
as in (3).  If both  and (Af),+] are now improved by 
t’he  ext~rapolation  technique  with p2=Ax2/Ax1=4 for 
convenience, we have 

+ m , r = + ( m A ~ , ~ A t ) ,  m=O,f l ,  . . . , T=O,  1 ,  . . . , 

In n similar  mariner we find the extrapolated  implicit 
diflerence  est’imates 

Inserting  these expressions into (15) and assuming a 
solution of the  form $m,T=A(T)e ima,  where a = 2 ~ A x / L  
with L the  wavelength, we find after some manipulation 

(a+ib)A(T+l)-((a”ib)A(T)=O, (21) 
where 

a=cos a-7, (22) 
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The so-called amplification  mat'rix ol (21) is given  by 

a-ib a=-- 
a f i b '  

from which we see that ]Gl$5=1, a  characterist'ic of the 
(stable)  implicit difference scheme. The solution of (21) 
for arbitrary t = T A t  rnay now be  written  as 

A(7)=\kGT, (25) 

where 9 is  t,he amplitude of t8he  assumed  initial  condition 
$m,O=\keima; i.e., A(O)=\k. From (25) we  rrmy then 
write  the complete  solution as 

$m,r=!P]G1712 exp { i [ m a + ~  tan" (2ab/u2-b2)]}. (26) 

Recalling 1 and  after some further  manipulat'ion, 
we may  write t'his  solution as 

$m,7=\k exp { i   ma-^ tan" (4X*/4-X*2)]}, (27) 
where 

Comparing X* with  the corresponding parameter 

occurring in  the  implicit difference solution ol the  baro- 
tropic  vorticity  equation  without  extrapolat'ion  (Gatcs 
[2]), we note  that  they differ only by the presence of' the 
bracketed  terms of (28). The  variation of X *  with L 
and Ax, is shown in figure 2 for the selected  values A t = 1  
hr., U=20 In. sec.", and P(45O lat.)=1.619X10"3 cm.-l 
see." By comp:trison with  the corresponding  values of X 
also given, we note X*> X for  all Ax and L. 

The solutions  with  and  without  extrapolation rnay now 
be conveniently  compared by  writing (27) in  the  form 

fClm.7=\kexp {?:lc[mAz~-~AtC.%]}, (30) 

where 12; is the phase  speed of the numerical  solution  and 
k = 2 ~ / L  is the  wave  number.  Here C$ is given by 

and its variation  with Ax and L is  shown in  figure 3, 
along  with the corresponding data for C, without  extrap- 

olation. The phase  speeds are seen t'o be  syst,emat8ically 
increased  for  all  L and Ax, particularly  in  the  intermediate 
cases, say 5Ax _ < L I  lOAx. If we compare  these  curves wit>h 
the corresponding  Rossby  phase  speed 

of t'he analytic solution of (1 5 ) ,  we may say that  the phase 
speed  error of t'he  numerical  solut'ion is approximately 
halved by t'he use of the Richardson  ext,rapolation t,ech- 
nique  with p=2. 

The  departure of the numerical phase speeds  from  t'he 
corresponding Rossby  phase speeds of the continuous 
solut'ion  is due to both  space  and  time  truncation  errors. 
1 he  present  extrapolation  technique, we note, seeks to 
reduce  only the  spatially  induced  error,  and  it is therefore 
ol int'erest to invest'igwt'e its relat'ive efficiency in  compari- 
son to the limiting case ol Ax-0. From (28) we first  see 
that 

,, 

2aAt lim X*= CR, (33) 
A740  

where CR is given by (32). Hence,  from (31) we have 

and  t,he difference bet'ween this expression and CR may 
then be att'ributed t'o the t'ime truncation  error alone.2 
In  other words, tjhe limit'ing  speeds  given by (34), and 
shown in figure 3 ,  are  the  most  accurate which  could be 
found  by  reductmion of the  spwe mesh  alone,  and  are  a 
reasonable  basis  for  comparison  with  t'he  results of the 
extrapolation  technique. In the case of Azl=lOO km., 
for example, we see that as L increases an increasingly 
large  fraction of t'lle total possible phase speed  improve- 
ment is  provided by the  present  ext'rapolation. We also 
note  that for L>1500 km.  (with  the  assumed  values of 
At, I/, and 6) the  limiting phtise speed  need not he  distin- 
guislled from Cl,; this  is to say t'hat t'he  time  t'runcation 
affects  mainly t,he shorter waves. 

4. THE  EXTRAPOLATION OF SOLUTIONS OF THE 
BAROTROPIC  VORTICITY  EQUATION 

In  the earlier discussion of the extrapolation  technique, 
we noted  t'hat t'he method  may  evidently he applied  either 
in the  estimation of the  individual differentials  or in  the 
improvement of t'he separate  solutions  themselves. The 
first method was  considered  in  sect'ion 3 above,  and we 
now turn  our  tltt'ention  to t'he second approach, which 
may be termed  "extrapolat,ion of solutions." This  tech- 
nique is, in fact., that' originally  suggested by Richardson 
161, who termed it t,he  "delerred approach  to t,he  limit." 

Cont'inuing  to use implicit differences for  convenience, 
the difference equation  approximating (15) is 

* This same limiting expression also results from the unextrapolated solutions given by 
Qates (21. 
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FIGURE 2.-The variation of the  parameter X* of (28) with Ax and I,. Also shown by the  dashed  lines is the corrcsponding  parameter (29) 
for the  unextrapolated difference case. Here At= 1 hr., U= 20 m.sec.-l, and p (45') = 1.619X 10-13 cm.-l set." 

The solution of this equatioll  for the simple  harmonic 
initial  condit,ions used earlier  is  readily  shown to be 

,~,,,~=q elp{ i [ma-T tan-' (A)]}, (36) Combining the separate  solutions  (37)  and (38) according 
t'o (40),  and  noting rnlal=m2cr2 a.t the  points of the larger 
mesh, we find after some manipul t' a ion 

4- x2 

where X is  given by (29) and a = 2 ~ A z / L  as before. 

mesh sizes Ax1 and Ax2 as 
We  may now write t811is solution specifically for  our  two # & 2 , r = \ k A  exp{ ik[m2As2-~Atc&]}, (41) 

1 
where the  amplitude  factor A is  given by 

and seek to combine  them  by  the ext'rapolat.ion  t,echnique. and t)he numerical  phase ppeed C& is  given by 
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FIGURE 3.-The variation of the  numerical  phase  speed c*, of (31)  with Az and L, for the  "extrapolation of differ- 

ences"  technique. Also shown by the  dashed  lines is the  corresponding  phase  speed  for  the  unextrapolated  difference  case.  The 
Rossby phase  speed C, of the  continuous  solution,  and  the  limiting  phase  speed  as A x d o  are also  given  for  comparison.  Here At= 1 
hr., U=20 m. scc.-1, and p (45")=1.619X10-13 cm.-' see." 

(43) 

In order t.o simplify the  further  analysis of these  results, 
let us assume that  the extrapolation of the two  solutions 
(40) is performed a t  each  time  st'ep. I t  then suffices to 
examine the solution (41) for 7=1, and the  amplitude 
factor  and  phase speed are accordingly  simplified. If 
t'his is not done,  and  the  extrapolation  is considered to 
be applied after  an  arbitrary  number of time  steps 7, t'he 
amplitude A will vary  with  the choice of 7 bet'wecn the 
limits 1 < ~ 4 < 5 / 3 . ~  With 7=1, the  variation of A with 

3 From  the  data presented by Qates 121, we may  estimate  that when 1,=100n km., 
&,=MO km., &2=40O km., At=1 hr., U=20 m.  see.", and @(45°)=1.619X10-13 cm.-l 
see.-' the maximum amplitude (5/3) would first occur for rrrl4. 

Ax, and L is shown in  table 1. We note  that  an  amplitude 
distort'ion of a few percent of the extrapolated  solution 

TABLE 1.-The variation of the ~ = 1  amplitude  distortion A of (48) 
as a funct ion of wavelength L and selected mesh  size  Axl.  Here 
the  second  mesh  Ax2=2Ax1, U=20 m. sec.-l, At=l  hr., and 
p(45") =1.619X10-13  cm.-l set.-" 

L 
(km.) 

400 
600 
ROO 

1000 
15on 
2000 

3000 
2500 

4000 
6000 

loo ___ 
1.0966 
1.0189 

1.0013 
1.0001 
1.0000 

I. 0014 

1. onoo 
1. ooon 
1. onoo 
1.0000 

*for L=1200 km. 
tfor L=IfiOO km. 
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FIGURE 4.-The variation of the  numerical  phase  speed C& of (43) with Arl and L, for the  “extrapolation of solutions”  technique. Also 

shown by the  dashed  lines is the  corresponding  phase  spccd for the  unextrapolated case. The ltossby phase spced CR of the  continuous 
solution is also  given for comparison.  Here At= 1 hr., r k 2 0  m. scc.“, a n d  p(45O) = 1.619X 10-13 cxn.-’ sec.-l 

(41) is confined to  the  shorter waves,  for  which the  larger 
truncat,ion  errors  are also made.  For  the longer  wave- 
lengths, X1+Xz and A 4 1 .  

The  variation of the phasc  speed (43) of the  extra- 
polated  solution  is  shown in figure 4 for T =  1 as above. 
The phase  speed improvement is seen t’o be most  pro- 
nounced  for the  shorter  waves;  by comparison  with 
figure 3 we note  that  approximat’ely twice as much  im- 
provement  over  the  unextrapolated  solution  is here 
obtained as was  obtained by the  technique of '(extra- 
polation of differentials.” For As,=lOO km., waves of 
length 21000 km.  are now moved with  very  nearly  the 
correct  speed. The present  method of “extrapolation of 
solutions” is therefore  somewhat  morc effective than  the 
method of section 3, a t  least as far as phase  speeds are 
concerned. 

5. A METHOD OF ”OPTIMUM”  EXTRAPOLATION 

While the  solution  extrapolation  tcclmique  described 
in the preceding  section  gives an overall  improvemcnt’ in 

phase  speed, the small  amplitude  distortion also introduced 
(table 1) may bc  an  undesirable  feature  for some purposes 
and accordingly  may  limit the practical  application of the 
method. The solution  extrapolation of (39) is based 
upon the  elimination of the  dominant  spatial  truncation 
error O ( A 2 ) ,  m d  is  in  this  smse only an approxima- 
tion. I t  is possible to  “extrapolate”  the  two solutions 
(37) and (38) in  a  slightly  different  way,  and  thereby to 
improve  certain  properties of the combined  solution. 

Let  us  form a simple  linear  combination of the solutions 
(37) and (38), 

1C~,.=ah,.7-b1Cm2,m2‘., (44) 

where a and b are  constants  to  be  determined  by  the 
imposition of two  conditions  upon  the  solution #x,T. As 
a first’ condition,  let us require the  amplitude of +’& to 
equal q, the  amplitude of the  initial conditions.  This 
condition will then remove the  amplitude  factor A found 
in  the  previous  method  (at  least for a certain  wavelength, 
as discussed below). As a second condition, wc may 
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require that  the solution  move at   the phase  speed 

ci;=(P“c,.1-cN,2)(P2-1)-1, (45) 

where cv,l and CN,2 are  the plrase speeds of t,he  solutions 
(37) and (38). This condition is suggested by  the more 
formal  extrapolation  technique,  and  insures that t’hc 
solution $g,r will move a t  a  more  accurate speed than 
does  either of its component  solutions. As before,  let 
us select p = 2 ,  and  note m1a!l=m2a2. From these  condi- 
tions we may  then  write (44) i n  the form 

and  t’hereby  determine a and b. Setting ~ = 1  as before 
and  introducing  the  notat,ion 

el=, tan-’ (%), 1 
3 4- x: (47) 

for convenience, we find  upon equating  real  and  imaginary 
parts of each side of (46), 

For a selected Ax, and Az2(=2Azl), the values of X1 and 
X2 vary  with  the  wavelength L (see fig. 1) .  Hence el 
Oz are likewise wavelength  dependent,  and it would appear 
that L must  be specified for a  unique  determination of a 
and b. Fortunately, however, the values of a and b Ere 
not  very  sensitive to  the value of L selected, as shown in 
table 2 below lor the case Az,=lOO k m .  For  the longer 

wavelesgths we notice that UA- and b+-j corresponding 

to  the  extrapolation  technique considered  earlier  in sec- 

4 1 
3 3 

TABLE 2.-The variation of the  weighting  coeficients  a  and b of (44) 

At=i  hr., p (45’)=1.619 X iO-l3 em.-’  sec.-l 
with  wavelength,  for  the case Axl=lOO km., U=dO m. set.", p = 2 ,  

Wavelength L (km.) 

I 400 1 600 1 800 I 1000 I 1500 1 2000 1 ~ 3000 I 6000 

b 0.358 0.33s 0.334 0.333 0.333 0.333 0.333 0.333 
1.252 1.318 1.330 1.332 1.333 1.333 1.333 1.333 

-~ 

t’ion 4. Since it is  the  shorter waves’ phase  speeds which 
require the most improvement, we may select L=400 
km., the  smallest  permissible  value  (the  resolution of t’he 
Axz mesh). In  t’his  case, the  phase speed of the solut’ion 

varies as shown in figure 5. Here  the corresponding 
phase  speeds  for  the  methods of sect’ions 3 and 4, as well 
as  that’ for the  unextrapolated  solution,  are shown for 
comparison. We not’e that’  the use of a=1.252 and 
b=0.358 in (44) has given  a  small  improvement  over the 
use of a=4/3,  and b=1/3 as  in (40), which in  turn  is 
somrmhat  superior to the  “extrapolation of differentials” 
of (27). This selection of a and b has, in effect, “tuned” 
tlw weighting  scheme to give the greatest  improvement 
a t  L=400 km.,  and is in t’his sense an  “optimum ’ scheme. 
For   ot lm Ax,, and  a corresponding  selection of a and b 
from table 2, generally  similar  results are  obtained. 

With  this  “t’unillg” t,o L=400 krn., the  amplitude  is 
unity  for  this  wavelength  but  is generally not  unity  for 
other  wavelengths, as shown in table 3.  This  amplitude 
distortion, especiall>- for the longer  waves, greatly  reduces 
the  attractiveness of this  “optimum”  method,  and is far 
more serious than  that of the  simpler  method of “extra- 
polation of solutions” (39). The small  phase  speed  im- 
provement  given b>- this  method  over  that of (39) would 
t’herefore not  be a useful improvement  in  practical appli- 
cation. 

6. THE  EXTRAPOLATION  TECHNIQUE  AND 
SMOOTHING 

The basic  ext’rapolntion  scheme (39) attempts to  irn- 
prove the accuracy of the finite-difference solutions by 
the removal of some ol  the  spatial  truncation  error. 
Smootlling  procedures  (Shurnan [9]), on the  other  hand, 
are designed to  suppress the shorter waves (for which  t’he 
larger  tmruncat,ion  error  is  made) by  the deliberate  intro- 
duction of additional  t,runcation,  and  in  this sense the 
two  procedures  are  opposed. Tf  we writ’e (39) for  a 
discret’e  variable qrn in  the  form 

where the  notations  are  as before, and writ’e Shuman’s 
“three-point”  smoothing  operator  for  the  same  variable 

TARLE 3.-The variation of the  amplitude  with  wavelength of the 
extrapolated  solution (46) ,  .for  the  choice L=400 k m .  in order  to 
drtermine  a (=i .252)  and b (=0.358) in (49) ,  (60). Here  Ax1= 
100 km.,  and p ,  U ,  At,  and p are  as in table L. 

Wavelengt,h L (km.) _____- 
400 I t%O 1 800 I 1000 1 1500 I 2000 1 3000 1 4000 I 6MH) 

1.000 0.915 0. 899 0.895 0.894 0.894 0.894 0.894 0.894 

“ 
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difference  extrapolation , C, 

200 300 400 600 800 1000 1500 2000 
Wavelength L in km.- 

3000 4000 6000 

FIGURE 5.-The variation of the  numerical  phase  speed Cg of (51) with L for the  “optimum”  solution  extrapolation at L=400 km., for 
the  case Ax1= 100 km. Also shown for comparison  are  the  corresponding  phase  speeds C& (43) for the  usual  solutionextrapolation 
technique. C$ (31) for the  difference extrapolation  technique, C, for the  uncxtrapolated  solution,  and CR ( 3 2 ) ,  the Rossby (contin- 

- - uous) phase  speed.  Here A t = l  hr., U=20 m. set.", and p(45O) 1.619X cm.” see.-’ 

we may examine this  relationship in more  detail. 
I n  (53), the  superscript i denotes an  “unsmoothed” 

value,  and i+l denotes  a  (once)  “smoothed”  value, while 
p is  the  “smoothing  index”. We  notice that on a formal 
basis the larger-mesh  solution pmz corresponds  to  the local 
smoothed  variable of Shurnan,  the smaller-mesh  solution 
prnl corresponds to the local  unsrnoothed  value, and  the 
extrapolated  solution cpk corresponds  to  the local  space 
average of the unsmoothed  variable of Shurnan. With 
this  interpretation  the  two  procedures  complement each 
other,  and  might well be employed together. For ex- 
ample,  one  could  apply  an  extrapolation  technique  and 
then apply  a  smoothing  operation,  with  the  result tlltit 
the  behavior of those  wavelengths  retained by  the  smooth- 
ing would be  better  than if smoothing  alone were applied. 
With Az,=lOO km., say,  and p = 2 ,  this could  be  accom- 
plished with (40) and a  smoothing  operator of the  Shuman 
type designed to  suppress waves of length I 6 0 0  km. 

554984-61-2 

7. CONCLUSIONS 

The technique of extrapolating finite-difference esti- 
mates to effective zero mesh size ~ystemat~ically reduces 
the  truncation  error of solutions of the  linear  barotropic 
vorticity difference equation.  This  technique increases 
the  numerical  phase  speeds  toward  the  continuous solu- 
tion’s  speeds, especially for the  shorter waves, while 
preserving the solution’s amplitude.  The  extrapolation 
of ent’ire difference solutions found with two different 
mesh sizes results  in an even  great’er  phase speed improve- 
ment,  and  may be adjusted to give optimum  results in the 
vicinity of select’ed wavelengths.  While  t’his  “extrapola- 
tion of solution”  technique  improves t’he solution’s  phase 
speed, it introduces an  amplitude  distortion of certain 
wavclrngths.  The  ordinary solution  extrapolation  method 
introduces  about’  a  10-percent  amplitude increase for the 
short’er  waves  only, while tho  “optimum” method  intro- 
duces  about  a  10-percent  amplitude decrease for all of the 
longer  waves, and is consequently  unsuitable for routine 
use. The method of “extrapolat’ion by differentials,” for- 
mally  equivalent to t’he use of the higher-order difference 
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approximations, may  then  be t,he best that can  be  expected 
from  the  extrapolation  techniques.  Whether  the  in- 
creased computation  required  by even this  method is jus- 
tified by  the increased accuracy  must  await  an  actual 
numerical  integration.  Such a test  is  particularly  impor- 
ta.nt in view of the  general  observation  that higher-order 
difference schemes  often  fail  to  provide the accuruc)- 
expected (Richtmyer [7]). 

Although the implicit difference scheme has been cm- 
ployed in this  analysis  for convenience,  t’he  techniques 
described are in no way  restricted  to it.  Noting  that the 
numerical  phase  speeds of solutions found with  the implicit 
difference scheme are less accurate  than those found,  say, 
with  the first-forward-t~~en-centered scheme (Gates [ 2 ] ) ,  
an extrapolation  technique  with  the  lat,ter difference 
scheme could be expected to give  corresporldingly  more 
accurate  results. 
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